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Abstract  

 
The explicit finite-element method is applied in this work to simulate the coupled and highly-
nonlinear thermo-mechanical phenomena that occur during steel solidification in continuous 
casting processes.  Variable mass scaling is used to efficiently model these processes in their 
natural time scale using a Lagrangian formulation.  An efficient and robust local-global 
viscoplastic integration scheme [1] to solve the highly temperature- and rate-dependent elastic-
viscoplastic constitutive equations of solidifying steel has been implemented into the commercial 
software ABAQUS/Explicit [2] using a VUMAT subroutine. The model is first verified with a 
known semi-analytical solution from Weiner and Boley [3].   It is then applied to simulate 
temperature and stress development in solidifying shell sections in continuous casting molds 
using realistic temperature-dependent properties and including the effects of ferrostatic pressure, 
narrow face taper, and mechanical contact.  Example simulations include a fully-coupled thermo-
mechanical analysis of a billet casting and thin-slab casting in a funnel mold.  Explicit 
temperature and stress results are compared with the results of an implicit formulation and 
computing times are benchmarked for different problem sizes and different numbers of processor 
cores.  The explicit formulation exhibits significant advantages for this class of contact-
solidification problems, especially with large domains on the latest parallel computing platforms. 
 
Keywords: Explicit, Thermal-Stress, Finite Element, Solidification, Continuous Casting, Parallel 
Computational Benchmarks, ABAQUS 
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1. Introduction  
 
Commercial processes involving solidification are worthy applications for advanced 
computational models because they are mature processes that are difficult to improve further 
through empirical means and also involve harsh environments that make experimentation 
difficult.  A major obstacle to successful modeling is the time-consuming nature of these 
computationally-demanding problems.  This is due to the many coupled, highly-nonlinear 
phenomena involved, their multi-dimensional nature, and the refined meshes needed to obtain 
reasonable accuracy.   
 
Continuous casting has produced 85% or more of the steel in the world for several decades.  The 
molten steel from the extraction processes flows under gravity into a bottomless copper mold.  
Molds range in shape from simple square billets to complex beam-blanks or funnel-shapes.  The 
steel solidifies a skin or “shell” against the water-cooled mold walls, and is pulled from the 
bottom of the mold at a specified “casting speed” that matches the solidification rate such that the 
process appears steady in a laboratory frame of reference.  The few seconds the steel spends in 
the mold are critical, as most of the defects in the final product arise in the mold [4].  Stresses and 
strains caused by thermal contraction, interaction with the mold walls, or other mechanical forces 
can generate internal cracks that can lead to catastrophic breakouts, or fill with segregated liquid 
and cause permanent defects in the final product.  The quality of continuously cast products is 
constantly improving, but better modeling work is needed to quantitatively understand how 
defects form in order to maximize quality and productivity.   
 
Many obstacles arise during the numerical modeling of thermo-mechanical behavior in 
solidification processes like continuous casting.  These obstacles include the incorporation and 
integration of the highly nonlinear viscoplastic constitutive laws, treatment of latent heat, 
treatment of the liquid/mushy zone that involves composition-dependent segregation, 
temperature-dependent material properties, intermittent contact between the solidified shell and 
mold surfaces, and coupling between the heat transfer and stress analysis through the changing 
thickness of the shell-mold interfacial gap.  
 
Various numerical methods have been used to solve the equations that govern the thermo-
mechanical behavior of a solidifying body.  Hattel et al. [5] applied a finite-difference method to 
simulate three-dimensional (3D) thermo-elastic stresses in a die casting with simple geometry.  
Cross et al. [6] have developed a finite volume code with unstructured meshes to model various 
casting processes.  Lee and coworkers [7] recently developed a finite volume method for coupled 
fluid flow, heat transfer, and stress of solidifying shells in a beam-blank mold.  Nevertheless, 
almost all thermo-mechanical models of solidification processes have applied finite-element 
methods with implicit solution methods [1,8-22].  This is due to their efficiency over finite-
difference and finite-volume methods in fast, stable convergence of the highly-coupled and stiff 
nonlinearities typically encountered in stress problems, especially with complex geometries. 
   
When fluid flow in the liquid pool must be coupled together with mechanical behavior in the 
solidifying shell, a few recent papers have adopted an Arbitrary Lagrangian Eulerian (ALE) 
formulation [17,18,19].  This implicit method combines Lagrangian elements, which move with 
the material, together with Eulerian elements, which remain fixed in space while material “flows” 
through them.  Fachinotti and Bellet [17] integrated ALE in the liquid and mushy regions with a 
pure Lagrangian treatment of solid regions in developing a combined model of mold filling and 
thermo-mechanical solidification.  In ALE mushy regions, the nodes contain both solid 
(Lagrangian) and liquid (Eulerian) velocities (displacement rates).  The full set of equations, 
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including both velocity and pressure, are linearized and solved at each time step using implicit 
Newton–Raphson (NR) iterations, with the aid of a preconditioned iterative solver.  Despite the 
modeling advantages of a single simulation that combines fluid flow, solidification, and 
mechanical behavior, the practical application of this method is hampered by its complexity, its 
need for 3D remeshing procedures, and convergence problems.  Furthermore, extra complexity is 
needed to account for the advection of material through the computational grid and to update the 
associated time-dependent variables.  Risso et al. [18] found that an ALE axisymmetric model of 
a billet casting had a higher computational cost than a pure Lagrangian generalized plane strain 
model and recommended the latter for future research work.  
 
The vast majority of previous solidification models have adopted implicit finite-element analysis 
in a Langrangian frame of reference, by tracking a slice through the strand as it moves down the 
caster, within a variety of one- and two-dimensional (1D and 2D) domains [1,8-16,20,21], and a 
recent uncoupled analysis with a 3D domain [22].  Although Lagrangian elements sometimes 
experience distortion problems when the material is severely deformed, this is not an issue in the 
solid and mushy regions of castings.  In solidification problems, cracks will form if the strains 
exceed only a few percent, so a small-strain model can be accurately applied to investigate 
thermal-mechanical behavior up to the initiation of cracks.  Cracks can be predicted with these 
models with the aid of damage criteria [21].  Furthermore, the advective terms and history-
dependent variable(s) can be easily updated with Langrangian elements.  Care must be taken in 
liquid regions to allow volumetric flow while avoiding excessive strain. 
 
Numerous constitutive models have been used to simulate solidification stresses, starting with 
simple elastic-plastic models [8,9].  A separate creep model can be added to roughly account for 
the time dependency [10].  More accurate elastic-viscoplastic models have been used [1,4,11-22], 
which unify the phenomena of creep and plasticity together through a structure parameter such as 
inelastic strain in the solid.  Integration of these time-dependent constitutive laws is a very 
challenging computational task due to their numerical stiffness.  Koric and Thomas [1] 
implemented a robust local viscoplastic integration scheme from an in-house code 
CON2D [4,14,15] into the commercial implicit finite element package ABAQUS/Standard via its 
user defined material subroutine UMAT, which has opened the door for realistic large-scale 
uncoupled 3D computational modeling of complex solidification processes [22].  However, 
coupled 3D problems with reasonable mesh resolution are still difficult to solve, owing to 
memory and speed limitations, even on supercomputers.   
 
For over 15 years, finite-element methods with explicit time integration have been used 
efficiently to simulate dynamic processes involving severe nonlinearities, such as sheet-forming, 
forging, and rolling [23,24,25].  Rebelo et al. [26] and recently Harewood et al. [27] found the 
explicit method to be more efficient and robust than the implicit method for large quasi-static 
problems with combined nonlinearities from complex material models and difficult contact 
conditions.  Explicit methods have not previously been applied to thermo-mechanical analysis of 
solidification. 
 
The objective of this work is to develop an effective and efficient tool to realistically model 
thermo-mechanical behavior in large solidification problems involving complex interacting 
phenomena, and to evaluate its performance.  To do this, a novel approach is proposed here to 
link a cost-effective explicit time integration solution method on the global level with an efficient 
and robust local viscoplastic integration scheme.  Both the thermal-stress results and the 
computational performance are compared with previous implicit methods.  The effects of 
problem size and parallel processing are also investigated. 
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2.  Governing Equations and Solution Methods 
 
The transient energy equation [28] is given in Eq. (1): 
 

( )H(T) k(T) T
t

⎛ ⎞∂ρ = ⋅⎜ ⎟∂⎝ ⎠
∇ ∇         (1) 

 
along with boundary conditions of prescribed temperature, prescribed heat flux, or the following 
convection condition: 
 
( ) g mk T h (T T )− ⋅ = −n∇         (2) 
 
whereρ is density, k is isotropic temperature-dependent thermal conductivity, H is temperature-
dependent enthalpy, which includes the latent heat of solidification, hg is an effective heat transfer 
coefficient at boundary portion Ah, mT is the mold surface temperature, and n is the unit vector 
normal to the boundary. 
 
The mechanical behavior of a material during solidification is controlled largely by the strains, 
which must remain lower than a few percent to avoid cracking [29].  Assuming small strain, as 
confirmed in many previous solidification models [10,14,15,18], the linearized strain tensor is 
[30]: 
 

])([
2
1 Tuu ∇+∇=ε

         (3) 
 
The statement of mechanical equilibrium is then: 
 

( ) 0x b∇ ⋅ σ + =          (4) 
 
where σ  is the Cauchy stress tensor, and b  is the body force density vector.  Together with 
boundary conditions of prescribed displacements or surface tractions ⋅ =nσ Φ  on boundary 
portion AΦ ,  Eq. (4) defines a quasi-static boundary value problem.  The rate representation of 
total strain used in this elastic-viscoplastic model is given by: 
 

thieel εεεε ++=          (5) 
 
where el ie th, ,ε ε ε are the elastic, inelastic (plastic + creep), and thermal strain rate tensors, 
respectively, and the superposed dot represents the first time derivative.  Stress rate σ  depends 
on elastic strain rate and with negligible large rotations, is given by Eq. (6) in which “:” 
represents inner tensor product.  
 

ie th:( )= − −Dσ ε ε ε          (6) 
 
D  is the fourth order isotropic elasticity tensor given by Eq. (7), which neglects the slightly 
anisotropic behavior of solidified metal with large oriented, columnar grains: 
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B
22 (k )
3

= μ + − μ ⊗D I I I
        (7) 

 
Here μ  and Bk  are the shear modulus and bulk modulus, and are in general functions of 
temperature, while I  and  I  are the fourth- and second-order identity tensors, respectively, and 
“ ⊗ ” denotes outer tensor product.  
 
2.1 Implicit Finite Element Method 
 
In the implicit nonlinear finite-element solution procedure, the fully implicit “backward finite-
difference” algorithm is applied for time integration of the governing equations.  In each time step 
Δt , the thermal field is solved, and then the resulting thermal strains are used to solve the 
mechanical problem.  Iteration continues until tolerances on residual errors for both equation 
systems are satisfied before proceeding to the next time step, as shown in Fig. 1.   

 
Fig 1 Implicit Solution Flow Chart 
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Within each time step, each nonlinear equation system is linearized and solved with a full 
Newton-Raphson iteration scheme, which requires several “global equilibrium iterations” 
(subscript i) as follows: 
 

{ } { }t+Δt t+Δt t+Δt
i-1 i-1 i-1K Δu = R⎡ ⎤⎣ ⎦         (8) 

 
where { }t+Δt

i-1Δu  is the incremental change to the solution vector (temperatures in thermal 

problems and displacements in mechanical problems), and { }t+Δt
i-1R  is the residual error vector.  

Eq. (8) is solved for { }t+Δt
i-1Δu , which is used to update the solution vector in Eq. (9), until 

convergence is achieved everywhere at time t+Δt  (when the update vector is sufficiently small). 
 
{ } { } { }tt

1i
tt

1i
tt

i uuu Δ+
−

Δ+
−

Δ+ Δ+=         (9) 
 
The tangent stiffness matrix t+ΔtK⎡ ⎤⎣ ⎦  is defined in Eq. (11) from the consistent tangent operator, 

also known as the “material Jacobian,” [J], which is defined in Eq. (10) for mechanical problems, 
taking t tˆ +ΔΔε  as a “guessed” mechanical strain increment, based on the current best displacement 
increment. 

t t

t tˆ

+Δ

+Δ

∂Δ=
∂Δ

J σ
ε

            (10) 

 
[ ] [ ][ ]t+Δt T

V

K = B J B dV⎡ ⎤⎣ ⎦ ∫           (11) 

 
where [ ] [ ]B N= ∂ ∂ x  contains the spatial derivatives of the element shape functions [ ]N .   
 
The finite element approximation of thermal problem, Eq. (1), is given by: 

[ ] ( ) ( ) ( )
h

T t t t T T
g m

V V A

1 N H H dV [B] k T [B]dV [N] h T T dA 0
t

+Δρ − + − − =
Δ ∫ ∫ ∫  (12) 

 
Applying the NR iteration scheme gives the following linearized matrix equation: 

[ ] [ ] [ ] [ ] [ ] [ ] { }

[ ] ( )
h

h

t t
T T Tt t t t t

i g i 1 T
iV V A

TT t t t t t t T t
g i m i

A V V

1 dHN N dV B k B dV N h N dA T {R }
t dT

1[N] h (T T )dA N H H dV [B] k [B]dV
t

+Δ
+Δ +Δ

+

+Δ +Δ

⎡ ⎤⎛ ⎞ρ + − Δ = =⎢ ⎥⎜ ⎟Δ ⎝ ⎠⎢ ⎥⎣ ⎦

− − ρ − −
Δ

∫ ∫ ∫

∫ ∫ ∫
    (13) 

 
For the mechanical problem, the residual error is defined as the imbalance between the force 
vector from internal stresses,  { }tS and the externally-applied loads, { }tP from body forces and 

surface tractions, [1,31]:  
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{ } { } { } [ ] { } [ ] { } [ ] { }T T Tt t t t t t
u

V V A

R S P B dV N b dV N dA
Φ

⎛ ⎞
= − = σ − + Φ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫   (14) 

 
Coupling between the thermal and mechanical fields is enforced in this work with similar 
accuracy to the “staggered” or “separated” solution approach [32].  Further detail on this method 
is provided elsewhere [1].   
 
2.2 Explicit Finite Element Method 
 
In addition to using an explicit method for both time and spatial integration, the explicit finite 
element method used here differs notably from previous methods in that the mechanical 
governing equation adds an inertial term ρu  to the right-hand side of Eq. (3), where u is the 
acceleration vector.  The heat transfer problem is simply marched through time by integrating Eq. 
(1) using the fully explicit “forward finite-difference” method:  
 

t+Δt t t{T} = {T} +{T} Δt         (15) 
 
The values of t{T} are computed after standard finite-element assembly as follows: 
 

{ } [ ] ( ) [ ] [ ] { }
h

t T T t-1
g m

A V

T = [C] N h T - T dA - B k B dV T
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫  (16) 

 
where [C] is the lumped thermal capacitance matrix based on the previous time step, 
which is inverted analytically, thus enabling an explicit solution of Eq. (16): 
 

[ ] [ ] [ ]
t

T

V

dHC = N ρ N dV
dT

⎛ ⎞
⎜ ⎟
⎝ ⎠∫                                                                                          (17) 

 
The numerical stability limit for the forward-difference operator in the thermal solution is given 
by: 
 

2
p eρc L

Δt min
2k

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
                               (18) 

 
where k  is thermal conductivity, ρ is density, and specific heat pc  is found from the slope of the 

enthalpy-temperature data, except in the solidification region, where pc  is found using [28]: 
 

( )
f

p
liq sol

HdHc (T)
dT T T

= −
−

          (19) 
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where fH is latent heat of solidification and liqT and solT are the liquidus and solidus 
temperatures. 
 
The mechanical problem is formulated in terms of nodal accelerations and explicitly advances the 
kinematic state of the system from the previous time step without iteration.  At the beginning of a 
time step, dynamic equilibrium is solved: 
 

{ } { } { }( )t t1u [M] P S−= −t         (20) 

 
where [ ]M  is the diagonal “lumped” nodal mass matrix which is trivial to invert, and { }tu  are 

the nodal accelerations at the beginning of the increment,  The accelerations are integrated 
explicitly through time using the central-difference method, which calculates the change in 
velocity assuming constant acceleration over a small time step.  This velocity change is added to 
the velocity from the middle of the previous step to calculate the velocities at the middle of the 
current step: 
 

( ) { }u u u
2

t+⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

t+ΔtΔt Δtt+ t- t2 2
Δt Δt

      (21) 

 
The velocities are integrated once more to calculate the displacement increment, which is then 
used to update the displacements at the end of the time step: 
 

{ } { }tu u
⎧ ⎫

= + ⎨ ⎬
⎩ ⎭

Δtt+t+Δt t+Δt 2Δt u
       (22) 

 
A numerical stability requirement limits the maximum time step size in the explicit method.  In 
general, the critical time step is max2 ω≤Δt , where maxω is the highest frequency (largest 
eigenvalue) of the system.  To avoid extracting eigenvalues, a more practical estimate of the 
stability limit is made using the dilatational wave speed dc  and the characteristic length eL  of the 
smallest element in the domain: 
 

min e

d

L
c

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
Δt          (23) 

 
2

dc λ μ
ρ

+=           (24) 

 
where λ is the first Lamé constant, μ is the shear modulus, and ρ  is the density of the element, 
which is chosen automatically to satisfy the user-defined critical time step.  Despite the large 
number of time steps needed for the explicit method, it is often more efficient than the implicit 
method, particularly when many expensive NR iterations are needed to solve Eq. (8).  Also, 
contact conditions are solved more easily using this explicit method than using an implicit 
method [26,27].  Furthermore, complete coupling between the temperature and displacement 
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fields is obtained automatically, given that the explicit method does not require iteration at the 
global level.  The flowchart in Fig. 2 details the steps in this explicit method.  
 

 
Fig 2 Explicit Solution Flow Chart 

 
In problems where inertial effects are not important, such as solidification, the density in Eq. (24) 
can be used as a parameter in the explicit analysis to reduce computational costs.  Specifically, 
increasing the density, called “mass scaling”, allows larger time steps without introducing 
stability problems.  This adds stability by damping the inconsequential stress shock waves which 
propagate rapidly throughout the metal.  The density increases are permissible because the shock 
waves are still fast enough after damping to equilibrate the stresses and have negligible effect on 
the results.  Eq. (24) shows that this approach can reduce solution time in proportion to the square 
root of the factor by which density was increased.  Because the stiffness properties change 
drastically during solidification, mass scaling was adjusted periodically during the analysis, while 
maintaining the user-defined desired time step [2].  It was insured throughout this work (as 
verified during post-processing) that changes in the mass and consequent increases in the inertial 
forces do not alter the solution, by choosing the time step to keep the ratio of the kinetic energy to 
the total strain energy less than 5% [27]. 
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3. Numerical Model Verification 
 
A semi-analytical solution of thermal stresses in an unconstrained, elasto-plastic solidifying plate 
[3] was used to verify both the implicit and explicit computational models.  Taking advantage of 
the large length and width of the solidification test-problem, a one-dimensional solution with a 
generalized plane strain condition in both the y- and z-directions can produce the complete 3D 
stress and strain states [1,15]. 
 
The domain adopted for this problem consists of a thin, narrow 30×0.1 mm slice through the plate 
thickness as shown in Fig. 3.   

 
Fig 3 Solidifying Slice 

 
For the thermal analysis, the 1D transient heat conduction equation is solved, as described 
elsewhere [1,15].  The surface temperature drops instantly from a constant initial temperature 
(which includes a very small superheat) to a fixed temperature at the mold wall, according to the 
conditions and properties given in Table 1.  A very narrow mushy region, 0.1 ºC, is used to 
approximate the single melting temperature assumed in this problem, to model pure materials and 
eutectic alloys.  The material in the mechanical problem exhibits elastic-perfectly plastic 
constitutive behavior.  The yield stress drops linearly with temperature from 20 MPa at 1000 ºC 
(the surface temperature) to zero at the melting temperature, which was approximated in the 
numerical models by Yσ = 0.03 MPa at the solidus temperature 1494.4 ºC.  All other material 
properties are constant with temperature.  Further details on this particular analytical solution are 
given elsewhere [1,15]. 
 
The implicit domain consists of a single row of 2D generalized plane strain elements (in the x-y 
plane), with the condition of constant strain imposed in the z-direction. In addition, a second 
generalized plane strain condition was imposed in the y-direction by coupling the displacements 
of all nodes along one edge of the slice domain.  ABAQUS/Explicit does not currently support 
generalized plane strain elements, so 3D eight-node hexahedron elements were used instead.  The 
generalized plain strain condition in the z-direction was enforced by fixing the z-displacements to 
zero on the bottom surface of the domain and coupling the z-displacements of the nodes on the 
top surface of the domain.  The y-direction generalized plane strain condition was similarly 
enforced.  Using fully-integrated elements (2×2×2 Gauss-Legendre quadrature) in the explicit 
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model resulted in underprediction of the surface stress, and selecting reduced-integration 
elements (one integration point, standard hour-glass control, and average-strain kinematic 
splitting) ameliorated this problem. 
 
Figures 4 and 5 show the temperature and the stress distributions, respectively, across the 
solidifying shell at two different times. These figures compare the semi-analytical solution with 
the numerical solutions from both the implicit and explicit models.  The temperature and stress 
results match very well among all three methods.  More details about verification of the implicit 
model can be found elsewhere [1] including comparisons with other less-efficient integration 
methods and a convergence study.   
 

Thermal Conductivity 33.0 W/(m·K) 
Specific Heat 661.0 J/(kg·K) 
Elastic Modulus in Solid 40.0 GPa 
Elastic Modulus in Liquid 14.0 GPa 
Thermal Linear Expansion Coefficient 20.0·10-6 1/K 
Density 7500.0 kg/m3 
Poisson’s Ratio 0.3 -- 
Liquidus Temperature 1494.45 ºC 
Solidification Temperature (Analytical) 1494.4 ºC 
Solidus Temperature 1494.35 ºC 
Initial Temperature 1495.0 ºC 
Latent Heat 272.0 kJ/kg 
Surface  Temperature 1000.0 ºC 

Table 1.  Constants Used in Solidification Test Problem 

 

 
Fig 4 Model Verification Temperature Results 
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Fig 5 Model Verification Stress Results  
 

 
In the absence of mass scaling, the explicit model requires a very small time step.  Given the 0.1-
mm-square elements, the first Lamé constant ( )( )1 1 2 8.077 GPaEλ ν ν ν= + − = , and shear 

modulus ( )2 1 5.385GPaEμ ν= + = , Eqs. (23) and (24) provide that the critical time step is 
63.1·10-9 seconds.  Setting the user-defined maximum time step to be 10-4 seconds (and thus 
forcing a density increase by a factor of about 2.5·106) did not produce any significant change in 
the temperature or stress results in the explicit model. 
 
 
4. Modeling of Continuous Casting of Steel 
 
The steel grade simulated in this work is a mild carbon steel with 0.27 wt. %C and a handful of 
other trace elements, giving solidus and liquidus temperatures of 1411.79 ºC and 1500.7 ºC, 
respectively.  Given the large temperature range the material undergoes in the continuous casting 
process, the temperature- and composition-dependence of many thermophysical properties and 
phenomena must be taken into account, most notably the viscoplastic high-temperature 
constitutive laws, but also material properties.  Other phenomena specific to the continuous 
casting process are also treated in this section. 
 
4.1. Constitutive Models and Their Integration 
 
This work solves separate constitutive models for the delta-ferrite and austenite solid phases, 
which have been shown in previous work to accurately reproduce the temperature, strain-rate, and 
composition-dependent behavior of solidifying steel [33].  The rate-dependent, elastic-
viscoplastic model III of Kozlowski [34] given in Eq. (25) was chosen for the austenite phase of 
solidifying plain-carbon steels.  This model was developed to match tensile test measurements of 
Wray [35] and creep test data of Suzuki [36].   
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( )

-3
1
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2

-3
3

C

f 31 f 2 1
ie C 1 ie ie

2

where :
Q = 44, 465  K

f  = 130.5 - 5.128×10 T [K] 

f = -0.6289 +1.114×10 T [K] 

f = 8.132 -1.54×10 T [K]  

f = 46,550 + 71, 400 (%C) + 120,000 (%C)

Q[sec ] f [MPa] f | | exp
T[K]

− − ⎛ ⎞ε = σ − ε ε −⎜ ⎟
⎝ ⎠

                  (25) 

  
This empirical relation relates the equivalent inelastic strain rate ieε with the von Mises stress σ , 
equivalent inelastic strain ieε , activation energy constant Q, carbon content %C, and several 
empirical temperature- or steel-grade-dependent constants 1 2 3 Cf , f , f , f .  Constant Q (in Kelvin) is 
the ratio of activation energy 369 kJ/mol , which is found to be close to that of self diffusion of 
austenite iron [37], and the universal gas constant 8.31 J/(mol·K). 
 
The modified power-law model developed by Zhu [14], Eq. (26), was used to simulate the delta-
ferrite phase, which exhibits significantly higher creep rates and lower strength than the austenite 
phase: 
 

[ ]
[ ]

( ) ( )
[ ]

[ ]

2

1
5.52

5.56 104

5

4

MPa
sec 0.1

(% ) (1 1000 )
300

where :

% 1.3678 10 %
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1
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n

ie

m
c ie

c

T K
f C

f C C

m T K

n
T K

δ

δ

σ
ε

ε

−

−
−

− ×

−

−

⎡ ⎤ =⎣ ⎦ ⎛ ⎞
+⎜ ⎟

⎝ ⎠

= ×

= − × +

=
× −

      (26) 

 
This delta-phase model is applied in the solid whenever the volume fraction of delta-ferrite is 
greater than 10%.  This approximates the dominating influence of the very high creep rates in the 
delta-ferrite phase on the net mechanical behavior of the mixed-phase structure.  The calculation 
of the volume fractions of the liquid, delta, and austenite phases is adopted from previous work 
[14,15]. 
 
Owing to the highly strain-dependent inelastic responses, a robust integration scheme is required 
at the local level to integrate the viscoplastic equations over a time step tΔ .  The system of 
ordinary differential equations defined at each material point by the viscoplastic model equations 
(6), (25) and (26) is converted into two “integrated” scalar equations by the backward-Euler 
method and then solved using a special bounded Newton-Raphson method [1,14,15,38,39]. 
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Details of this local integration scheme, implemented originally into the ABAQUS/Standard user 
subroutine UMAT [1] and here into the ABAQUS/Explicit user subroutine VUMAT, can be 
found elsewhere [1,14,15,38], along with the derivation of the consistent Jacobian.  The explicit 
formulation naturally does not require the tangent matrix or other complications needed by 
implicit methods, which is one of the reasons for increased performance.  The solution obtained 
from this “local” integration step at all material (integration) points is used to update the implicit 
global finite-element equilibrium equations, or the explicit equations, according to the solution 
procedures explained in section 2.  
 

4.2. Treatment of Liquid and Mushy Zone 
 
The large property variations between the liquid, mush, and solid phases add a significant 
challenge to thermo-mechanical simulations.  In the current model, an isotropic elastic-perfectly-
plastic rate-independent constitutive model is applied above the solidus temperature to ensure 
negligible strength when liquid is present. This simple fixed-grid approach avoids the difficulties 
of adaptive meshing or “giving birth” to solid elements.  The liquid yield stress Y 0.01MPaσ =  
is chosen small enough to effectively eliminate stresses in the liquid and mushy zone, but also 
large enough to avoid computational difficulties.  Local time-integration of the liquid and mushy 
elements uses the standard radial-return algorithm, which is a special form of the backward-Euler 
procedure [31,40].  
 
4.3.Thermal Strain  
 
Thermal strains arise due to volume changes caused by both temperature differences and phase 
transformations, including solidification and solid-state phase changes between crystal structures, 
such as face-centered cubic austenite and body-centered cubic ferrite.  
 

0

( )
T

th ij
T

dδ α τ τ= ∫ε          (27) 

 
Where α is the isotropic temperature-dependent coefficient of thermal expansion [1], 0T is the 
reference temperature (20 ºC in this work), T  is the temperature of the integration point where α  
is sought, and ijδ is Kronecker’s delta. 
 
4.4. Other Thermo-Mechanical Properties 
 
The temperature-dependence of many material properties of steels have been measured by many 
experimentalists, such as elastic modulus [41], thermal conductivity [42], specific heat [43], and 
density [42, 43, 44], which is also used to determine the thermal expansion coefficient.  The 
measurements have been fitted to temperature- and composition-dependent relations, which can 
be found elsewhere [15]. 
 
4.5. Two-Dimensional Approximation 
 
To simplify the numerical modeling of the continuous casting process, a transient Lagrangian 
domain is adopted, where the analysis follows a slice of material as it moves down through the 
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casting machine at the casting speed.  Relative to a “laboratory” frame of reference however, the 
process reaches steady state after a transient period following the start-up process or a change in 
casting conditions.  For steel, this process has a high Péclet number (typically on the order of 
2·105), meaning that advection heat transfer dominates over conduction in the axial (casting) 
direction.  Thus, axial conduction can be neglected, and the 2D transient domain can reproduce 
the complete 3D steady temperature results.  For the mechanical analysis, the most appropriate 
2D approximation is a generalized plane strain condition, which requires that the axial strain 
components are all equal to the same constant value (since all model domains in this work take 
advantage of at least two-fold symmetry). 
 
4.6. Boundary and Initial Conditions 
 
Continuous casting molds are given a taper to attempt to compensate for the shell shrinkage and 
ensure good contact (and thus uniform heat transfer) between the shell and the mold.  The mold 
taper and changes in mold shape are included in this numerical model by prescribing the 
velocities of the mold contact surfaces as a function of time, consistent with distance down the 
mold according to the Lagrangian formulation used in all of the models.  The velocities were 
prescribed instead of displacements because defining the nodal displacements in the explicit 
model caused unrealistic behavior from acceleration spikes.  
 
Mechanical contact between the steel shell surfaces and mold surfaces was imposed with a 
tangential friction factor of 0.1 [45].  The explicit method readily employed the standard ”hard” 
contact algorithm, (penalty-based method) in ABAQUS [2], but the implicit method required 
some contact stabilization in the form of viscous damping [2] to overcome the contact 
convergence difficulties experienced in the 3D example, as discussed later. 
 
The heat conducted across the contacting surfaces is a strong function of the distance between the 
surfaces.  The gap between the surfaces is computed in the stress analysis and used in the heat 
transfer analysis to define conduction across the interface.  The gap heat transfer coefficient gh  is 

found according to: 
0
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       (28) 

where d  is the gap size, 0d  is the critical gap size (taken to be 0.1 mm in this work), airk  is the 
thermal conductivity of the gas in the gap, cR  is the contact resistance of the interface, radh  is 
the effective heat transfer coefficient due to radiation, and 0h  is the gap heat transfer coefficient 
corresponding to a gap of size 0d .  Values of these terms, which vary with temperature, and 
further details of this gap heat transfer calculation are given elsewhere [46,47].  Truncating the 
gap heat transfer coefficient at 0h  also facilitates comparison of the different models, forcing the 
coefficient to be constant for small gaps (less than 0d ) in order to avoid changes in heat transfer 
due to minor changes in contact convergence.   
 
Two-way coupling is necessary to capture the effects of the evolving interfacial gap, given that 
the stress solution depends on the temperature field through thermal strain, Eq (27), and gh  
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depends on the gap distance calculated from the mechanical solution using Eq (28).  Both of the 
methods presented here incorporate this coupling (see Section 2) using a single finite element 
type of the CPExT and C3DxT ABAQUS element families in two and three dimensions, 
respectively.   
 
The liquid steel inside the solidified shell exerts a pressure on the inside surface of the shell, 
known as the ferrostatic pressure (analogous to hydrostatic pressure), that increases linearly with 
distance below the liquid steel meniscus.  This effect is included in the model as a distributed load 
applied outward at the surface of the steel shell.  This slight shift in the location where the 
pressure is applied has a negligible effect on mechanical behavior of the steel shell in the mold, 
yet greatly improves convergence by avoiding the need to transmit force through the weak 
elements near the solidification front. 
 
The initial temperature of the simulated steel is uniformly 1540 ºC, equal to the temperature at 
which it is poured into the mold.  The mold is maintained at a constant 150 ºC throughout the 
analysis, which is the approximate average value of the surface temperature in the mold. 
 
 
5. Two-Dimensional Billet-Casting Example 
 
A 2D transverse slice of a billet mold and solidifying shell was used to compare the explicit and 
implicit methods for the first time on a realistic solidification problem.  The models in Figure 6 
take advantage of the eight-fold symmetry provided by the billet mold geometry and use identical 
meshes of standard four-node plane-strain quadrilateral finite elements.   

 
Fig 6 One-eighth Billet Finite-Element Domain 
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The mesh consists of 7686 elements with 15986 nodes.  The element size (edge length) for the 
strand domain varies from 0.25 mm close to the contact surface to 0.6 mm at the free liquid 
surface.  Due to the relatively small number of degrees of freedom, parallel processing was not 
investigated in this example.  
 
These models simulate the first 17 seconds below the meniscus, which corresponds to a 0.71 m 
long mold with a casting speed of 2.5 m/min.  The implicit solver typically required four global 
Newton-Raphson iterations to achieve global convergence in a given time step, though early 
times required more than twelve iterations and the adaptive time-stepping algorithm in ABAQUS 
reduced the time step size.  The time steps increased from 10-4 seconds to 0.01 seconds towards 
the end of the simulation.  The implicit analysis required 18 minutes to complete the simulation 
on a Dell PowerEdge 1955 server.  The explicit code finished the same simulation in 16 minutes 
with the variable mass scaling keeping the desired 2·10-5-second time steps.  
 
Temperature contours from the two analyses are compared in Fig. 7 at the end of the simulation.  

 
Fig 7 Temperature Contour, Comparison of 2D implicit and explicit simulations of billet casting 
(17 sec below meniscus)  
 
The temperature drops very near the corner due to the 2D cooling effect in this region.  
Temperature increases in the off-corner region, owing to the increase in interfacial resistance 
caused by the gap as the corner shrinks away from the mold.  An excellent match between 
temperature contours from the two methods can be observed.  
 
Contours of y-stress, which is the stress component perpendicular to the solidification direction, 
are compared at mold exit (17s) in Fig. 8.   
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Fig 8 Y-stress Contour, Comparison of 2D implicit and explicit simulations of billet casting (17 
sec below meniscus) 
 
The results qualitatively agree with the analytical solution, which exhibits surface compression 
and sub-surface tension near the solidification front.   The lowest y-stress of -3.6 MPa is found at 
the shell surface area where the “cold” part of the solidified shell is compressed due to the 
increased surface shrinkage.  The large island of tensile stress whose peak reaches about 1.75 
MPa is found in both solutions at the warmest part of newly solidified shell.  The implicit 
solution shows intermittent jagged contours, due to numerical oscillations.  These have been 
noted in previous work with implicit models [15].  The explicit solution shows smoother 
contours, which is consistent with its greater stability.   
 
 
6.  Funnel-Mold Casting 
 
The two thermo-mechanical models were next applied to coupled analyses of continuous casting 
in a complex-shaped funnel mold.  This problem presents a serious computational challenge, 
especially when treated in three dimensions [22].  Figure 9 shows a schematic of the funnel-mold 
thin slab casting process.  
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Fig 9 3D Schematic of thin slab casting 
 
 To enable a thinner mold than conventional slab casting, the funnel shape design provides the 
space needed for the submerged entry nozzle, which protects the molten steel from atmospheric 
contamination.  This particular funnel design has flat, parallel sections in the center of the mold 
and near the narrow faces.  The funnel section gradually tapers down the mold into a rectangular 
section which gives the slab its near-final shape.  The dimensions of the funnel mold are shown in 
Figure 10, which also highlights the computational domain that takes advantage of quarter 
symmetry.  Both the 2D and 3D models are constructed to model 5 seconds of casting, with a 
casting speed of 5.5 m/min, which corresponds to 460 mm of the 1100-mm mold length. 

 
Fig 10 Funnel Mold Dimensions 



 20

 
6.1. Two-Dimensional Model 
 
The 2D analysis domain described in section 4 for the funnel mold consists of a thin L-shaped 
slice that is 17-mm thick in the transverse plane, as shown in Fig. 11.  

 
Fig 11 Two-Dimensional Funnel Model Boundary Conditions 
 
 This enables simulations of solidification up to almost twice the expected shell thickness at mold 
exit.  To fairly compare the implicit and explicit analyses, both models used meshes consisting of 
a single layer of hexahedron elements, 2 mm thick in the casting direction.  The generalized plane 
strain condition was imposed with constraint equations because ABAQUS/Explicit currently does 
not have generalized plane strain elements.  All boundary conditions, initial conditions, material 
properties, and constitutive laws used in both models are the same, as described in section 4 and 
illustrated in Fig 11.  The shell domain initially corresponds to the shape of the funnel mold at the 
meniscus.  The deformation of the shell caused by moving down through the funnel shape was 
imposed by prescribing the y-velocities of the mold contact surfaces to appropriate functions of 
time and space. 
 
A mesh of 29,169 elements (about 160,000 degrees of freedom) was chosen to capture the 
solidification phenomena for this problem. The implicit coupled solver experienced instabilities 
with its contact algorithm that frequently terminated the simulation, especially at early times.  
Contact stabilization in the form of viscous damping in the normal direction had to be applied to 
enable the implicit solver to complete a simulation.  The explicit simulation required time steps of 
5·10-6 seconds to avoid divergence problems.  
 
The explicit and implicit simulation results at 5 seconds (460 mm below the meniscus) are 
compared in Figures 12-15 for the same coarse mesh of 29,169 elements.  In addition, a more 
refined mesh of 109,224 elements (about 543,000 degrees of freedom) was investigated for the 
explicit model to try to attenuate some of the numerical fluctuations. 
 
Figures 12 and 13 show through-thickness profiles of temperature and tangential stress at the 
mold centerline.   
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Fig 12 Through-Thickness Temperature Profiles 
 

 
Fig 13 Through-Thickness Tangential Stress Profiles 
 
Tangential stress (perpendicular to the dendrite growth direction) was computed during post-
processing from the 2D stress transformation equation [48] applied to the in-plane stress 
components.  The angle of rotation is readily determined through the geometry of the mold.  The 
explicit and implicit solutions match temperature results within 0.5 ºC for identical meshes.  The 
refined mesh with the explicit solver produces a smoother temperature profile.  The explicit 
solutions predict less compressive stress on the surface than the implicit solution, and are also 
unable to capture the subsurface tensile stress peak that the implicit solution predicts.  The more 
refined explicit solution matches closer to the implicit solution. 
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Fig. 14 shows the surface temperature distribution on the wide face at 5 seconds below meniscus.  
The course-mesh explicit and implicit results generally match within about 0.5 ºC, and the refined 
mesh is about 2 ºC hotter.  The funnel has a very slight 2D effect on the heat transfer, causing a 
small (about 1 ºC) decrease and increase from 130 mm to 302.5 mm and 302.5 to 475 mm, 
respectively, from the centerline.   

 
Fig 14 Wide Face Surface Temperature 
 
A small spike in the profiles around 475 mm from the centerline is caused by a small gap opening 
from a combination of the shell shrinking and the changing funnel shape pushing on the shell.  
This temperature difference augments the corresponding spike in the surface tangential stress as 
seen in Fig. 15.  The spike is more severe with the explicit model, owing to the large wave speed 
gradients.   
 

 
Fig 15 Wide Face Surface Tangential Stress 
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The funnel pushes the shell to “unbend” it, which alters the stress in the funnel region [49].  
Although the bending stresses are most severe at the shell surface, the shell experiences 
compression through its entire thickness, which is partly due to squeezing by the narrow face of 
the mold.  The implicit solution grows more compressive in the outer half of the mold.   The 
differences between the implicit and explicit stress solutions are likely due to the different effects 
of mesh resolution on the different formulations, as well as the different contact algorithms used.  
 
 
6.2. Three-Dimensional Model 
 
The final analysis is a 3D explicit Lagrangian simulation of a portion of the shell as it moves 
through the funnel mold.  This model geometry is an extrusion of the 2D domain for a length, , 
of 100 mm in the casting direction, and each point in the material has its own “local time” based 
on when the point passes the meniscus.  The changing shape of the mold face is included in the 
model by means of a time- and spatially-dependent displacement function.  Fig. 16 shows the 
boundary conditions on the analysis domain in the Lagrangian frame of reference. 

 
Fig 16 Three-Dimensional Funnel Model Boundary Conditions  
 
The bottom of the domain begins at the meniscus, and the top was chosen to coincide with the top 
of the mold, as shown in Fig. 16.  At 0t = , the Lagrangian frame begins moving with constant 
velocity CV  in the Z- (casting) direction.  Thus, the distance of any point in the domain below the 
top of the mold in the lab frame, Z, is related to its distance below the top of the 3D domain, z, by 
the following relation, which is simplified in this case because mensicusz = : 
 

C meniscus CZ V t z z V t z= + + − = +         (29) 
 
Note that the top of this domain trails the bottom in time by CV , which is 1.09 seconds in this 
case.  The position of the mold surface at the center of the wide face is given as a function of 
distance down the mold from Fig. 10, as: 
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where NFd  and CLTd  are the strand thickness at the narrow face and centerline of the mold on the 
top surface, respectively, and fL  is the funnel length, as shown in Fig. 10.  Substituting Eq. (29) 
into Eq. (30) and taking the first time derivative provides the velocity of each node on this path 
down the mold surface: 
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Similar expressions are derived for all locations around the mold perimeter, though in general 
they are functions of x and t.   
 
Typical 3D results from the explicit model are shown in Fig. 17.  

 
Fig 17 Three-dimensional surface contours at 5 seconds of a) temperature and b) z-stress (casting 
direction)  predicted by the explicit model 
 
 Surface temperatures are relatively uniform, except very near the corner, where 2D cooling 
exists.  This is because the shell stays in reasonably close contact with the surface, so the gaps are 
all within the tolerance of 0.2 mm, which causes no change in heat conduction.  The axial stress 
(in the casting direction) is one of the primary reasons for applying a 3D model.  The relatively 
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uniform stress distribution in the central region indicates that the funnel does not cause significant 
axial bending in top portions of this mold.  Fig. 17 clearly shows the complicated 3D state of 
stress that exists in the corner and off-corner regions, which the 2D models cannot capture 
correctly.  This region is prone to transverse surface cracks in practice, caused by the axial stress.  
 
The 2D and 3D model predictions are compared in Figs. 18-21.  Near the leading (bottom) and 
trailing (top) ends of the 3D model domain, “end effects” significantly alter the stress results.  
This is due to the lack of constraint, and extends about 15-mm.  To make a realistic comparison, 
data was extracted from the 3D model in a plane 19 mm above the leading edge at 5 seconds into 
the simulation (relative to the leading edge).  The corresponding 2D results are taken at 4.8 
seconds into the simulation.  The models match favorably, as seen in Figs. 18-21.    

 
Fig 18 Through-Thickness Temperature Profiles 
 

 
Fig 19 Tangential Stress Profiles through the shell thickness 
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Fig 20 Comparison of model dimensions and mesh refinement on surface temperature 
 

 
Fig 21 Comparison of model dimensions and mesh refinement on surface tangential stress 
predictions along shell perimeter 
 
The temperature profiles through the thickness (Fig. 18) and along the perimeter (Fig. 20) both 
match within about 3 ºC.  This agreement validates the arguments made by many previous 
modelers that axial conduction is negligible with the large Péclet number of this continuous 
casting process.  The 3D model stress results also match reasonably with the 2D predictions of 
tangential stress (generally within 0.5 MPa) both through the thickness (Fig. 19) and along the 
perimeter (Fig. 21).  The 3D mesh refinement is the coarsest, which explains the slight variations 
between the three solutions.  The agreement between these models validates the use of the 
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generalized plane strain condition in 2D modeling of mechanical behavior of the shell in the 
mold, in the absence of axial bending.   
 
6.3. Computational Performance 
 
The performance of the explicit and implicit methods for the 2D funnel mold problem was 
evaluated for different mesh refinements and different numbers of parallel processor cores.  Fig. 
22 presents a comparison of single-core CPU solution times for 0.1 seconds of simulation as 
mesh refinement increases from 20,000 to 500,000 degrees of freedom (DOF).  The CPU times 
were normalized relative to the CPU time needed for the smallest 20k DOF mesh refinement (23 
seconds).  The two methods have practically the same efficiency for problem sizes less than about 
100,000 DOF.  As problem size increases past this threshold, the explicit solver out-performs the 
implicit solver at an increasing rate.  The corresponding log-log plots are roughly linear and their 
slopes reveal that CPU time increases in proportion to the number of degrees of freedom raised to 
the power of 1.41 for the explicit model, compared with 1.92 for the less-efficient implicit model.   
While the scaling exponent for the implicit method, with its direct, sparse-matrix solver, is near to 
the theoretical value of 2.0 [2], the simple explicit method is less efficient than the expected 
linearity (1.0) [2], perhaps due to the iteration required for the local integration of the material 
model.  In addition to its large savings in CPU time, the explicit solver required much less 
memory for all runs: needing on average only 5-10% of the implicit solver memory usage.  

 
Fig 22 Comparison of CPU time for explicit and implicit models with different domain sizes  
 
 
Fig 23 compares the wall clock times of the coupled explicit and implicit analyses with multiple 
cores.  The computing platform used in this analysis is a Linux cluster at NCSA made of  Dell 
Power Edge 1955 servers [50], each with two Intel 64 quad-core 2.33GHz “Clovertown” 
processors [51].  The explicit model was run with HP-MPI [52], which allows distributed 
memory parallel (DMP) jobs between nodes of the cluster via a fast InfiniBand network.   
 
There is only a limited speedup (wall clock scaling) with the implicit solver for 2 and 4 cores. 
With more than 4 cores, the implicit solver for the 150k-DOF problem experiences a performance 
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drop, due to increased parallel communication overhead.  The explicit solver shows an efficient 
wall clock scaling from 1 to 4 cores for the 150k-DOF problem, while the larger 660k-DOF 
problem improved performance even up to 16 cores (2 compute nodes with 8 cores each) before 
communication performance became an issue.  The complete 660k-DOF 3D simulation required 
34 hours of CPU time on 16 cores (2 nodes) of the Linux cluster.   

 
Fig 23 Speedup Achieved with Parallel Processors 
 
The explicit formulation clearly has much more efficient speedup with multiple processors, 
relative to the implicit formulation.  Larger problems, such as 3D domains, solved with the 
explicit code clearly show an even better speedup with multiple processors.  
 
 
Conclusions 
 

• An explicit finite-element model of steel solidification has been developed using 
ABAQUS/Explicit.  

• This new model includes a VUMAT subroutine which incorporates the rate-dependent 
constitutive laws and local integration procedure, based on the UMAT subroutine 
developed previously for implicit analysis with ABAQUS/Standard [1]. 

• The temperature and stress results from the explicit model match both the analytical and 
implicit solutions of the verification problem.  

• The explicit and implicit solvers have comparable performance in a 2D problem using a 
single processor, even though the explicit solver requires very small time steps for 
numerical stability. 

• The explicit solver has demonstrated a high level of robustness when simulating the 
combined nonlinearities coming from the constitutive laws, material properties, and 
contact conditions that occur during realistic steel solidification processes.  

• The explicit model requires less memory and runs faster than the implicit model for 
problems with more than 100,000 degrees of freedom in either two or three dimensions.  
Furthermore, the explicit solver also scales better on parallel computers. 
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• The assumptions of neglecting axial conduction and generalized plane strain (in the 
absence of axial bending) when modeling continuous casting of steel have been proven 
valid by direct comparison, for the first time, of the 2D and 3D model results.  

• The new, explicit-solver-based solidification model presented in this work will be 
particularly beneficial in future analysis of 3D, fully-coupled problems with properly-
refined meshes on DMP multi-core clusters, which are becoming more commonly 
available. 
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Nomenclature: 
 
A m2  Surface  

hA  m2  Convection-Prescribed Surface 
AΦ  m2  Traction-Prescribed Surface 
[B] 1/m  Spatial Derivative of [N] 
b N  Volumetric Force Vector 

pc  J/kgK  Specific Heat 
cd m/s  Dilatation Wave Speed  
[C] J/kg  Capacitance Matrix 
D  N/m2  4th Order Elasticity Tensor 
d m  Interfacial Gap Size  
dO m  Critical Gap Size 
dCLT m  Centerline Strand Thickness 
dNF m  Narrow Face Strand Thickness 
E N/m2  Elastic Modulus 
f 1/ses  Viscoplastic Law Function 
fc MPa-f3s-1  Empirical Constant in Kozlowski III law 

cfδ    Empirical Constant in Enhanced Power Delta law 
f1 MPa  Empirical Constant in Kozlowski III law 
f2   Empirical Constant in Kozlowski III law 
f3   Empirical Constant in Kozlowski III  
H J/kg·K  Enthalpy 
Hf J/kg·K  Latent Heat of Solidification   
hg W/m2K  Total Gap Heat Transfer Coefficient 
hO W/m2K  Critical Gap Heat Transfer Coefficient 
hrad W/m2K  Radiation Gap Heat Transfer Coefficient 
I    4th Order Identity Tensor 
I    2nd Order Identity Tensor 
J  N/m2  Material Jacobian  
[K] N/m  Tangent Stiffness Matrix  
k W/mK  Thermal Conductivity 
kair W/mK  Air Thermal Conductivity 

Bk  N/m2  Bulk Modulus 
Le m  Characteristic Element Length  
Lf m  Funnel Length 

 m  Thickness of 3D Domain in casting dir.  
m,n    Empirical constants used power delta law 
[N]   Element Shape Functions  
n    Surface Unit Vector 
[M] kg  Mass Matrix  
P N  External Force Vector  
q̂  W/m2  Prescribed Heat Flux  
Q,  K            Activation Energy Constants 
Ru N  Mechanical Residual Force  
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RT W  Thermal Residual Force  
Rc m2K/W  Contact Resistance 
S N  Internal Force Vector  
T ºC,K  Temperature 

liqT  ºC  Liquidus Temparature 

solT  ºC  Solidus Temparature 

mT  ºC  Mold Temperature 

OT  ºC  Reference Temperature 
u m  Displacement Vector 
u  m/sec  Velocity Vector 
u  m/sec2  Acceleration Vector 
V m3  Volume 
Vc m/s  Casting Speed 
Vy m/s  Nodal Velocity of Mold Surface   
x m  Position Vector  
y(Z) m  Nodal Center Face Mold Surface y position  
Z m  Nodal Distance Below Mold Top 
z m  Nodal Distance Below 3D Domain Top 
zmeniscus m  Meniscus Distance 
α  1/ºC  Coefficient of Thermal Expansion 

ijδ    Kronecker’s Delta 
ε    Total Strain Tensor 

ˆΔε    Guess for Tot. Strain Incr. Tensor 
ε  1/sec  Total Strain Rate Tensor  
εel    Elastic Strain Tensor 
εel  1/sec  Elastic Strain Rate Tensor 
εie    Inelastic Strain Tensor 
εie  1/sec  Inelastic Strain Rate Tensor  

ieε  1/sec  Equivalent Inelastic Strain  

thε    Thermal Strain Tensor 

thε  1/sec  Thermal Strain Rate Tensor 
λ  N/m2  First Lamé Elastic Constant  
μ  N/m2  Shear Modulus  
σ  N/m2  Stress Tensor - small strain formulation 
σ  N/m2,MPa Equivalent Stress 
ρ  kg/m3  Density 
μ  N/m2  Shear Modulus 
Φ  N/m2  Surface Traction Vector 

maxω  1/sec  Highest System Frequency  
 

 
 
 


